Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.

Identifieur interne : 004604 ( Main/Exploration ); précédent : 004603; suivant : 004605

Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.

Auteurs : Todd N. Rosenstiel [États-Unis] ; Alison J. Fisher ; Ray Fall ; Russell K. Monson

Source :

RBID : pubmed:12114581

Descripteurs français

English descriptors

Abstract

The biosynthesis and emission of volatile plant terpenoids, such as isoprene and methylbutenol (MBO), depend on the chloroplastic production of dimethylallyl diphosphate (DMAPP). To date, it has been difficult to study the relationship of cellular DMAPP levels to emission of these volatiles because of the lack of a sensitive assay for DMAPP in plant tissues. Using a recent DMAPP assay developed in our laboratories, we report that species with the highest potential for isoprene and MBO production also exhibit elevated light-dependent DMAPP production, ranging from 110% to 1,063%. Even species that do not produce significant amounts of volatile terpenoids, however, exhibit some potential for light-dependent production of DMAPP. We used a nonaqueous fractionation technique to determine the intracellular distribution of DMAPP in isoprene-emitting cottonwood (Populus deltoides) leaves; approximately 65% to 70% of the DMAPP recovered at midday occurred in the chloroplasts, indicating that most of the light-dependent production of DMAPP was chloroplastic in origin. The midday concentration of chloroplastic DMAPP in cottonwood leaves is estimated to be 0.13 to 3.0 mM, which is consistent with the relatively high K(m)s that have been reported for isoprene synthases (0.5-8 mM). The results provide support for the hypothesis that the light dependence of isoprene and MBO emissions is in part due to controls over DMAPP production.

DOI: 10.1104/pp.002717
PubMed: 12114581
PubMed Central: PMC166521


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.</title>
<author>
<name sortKey="Rosenstiel, Todd N" sort="Rosenstiel, Todd N" uniqKey="Rosenstiel T" first="Todd N" last="Rosenstiel">Todd N. Rosenstiel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334</wicri:regionArea>
<wicri:noRegion>Colorado 80309-0334</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Alison J" sort="Fisher, Alison J" uniqKey="Fisher A" first="Alison J" last="Fisher">Alison J. Fisher</name>
</author>
<author>
<name sortKey="Fall, Ray" sort="Fall, Ray" uniqKey="Fall R" first="Ray" last="Fall">Ray Fall</name>
</author>
<author>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12114581</idno>
<idno type="pmid">12114581</idno>
<idno type="doi">10.1104/pp.002717</idno>
<idno type="pmc">PMC166521</idno>
<idno type="wicri:Area/Main/Corpus">004620</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004620</idno>
<idno type="wicri:Area/Main/Curation">004620</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004620</idno>
<idno type="wicri:Area/Main/Exploration">004620</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.</title>
<author>
<name sortKey="Rosenstiel, Todd N" sort="Rosenstiel, Todd N" uniqKey="Rosenstiel T" first="Todd N" last="Rosenstiel">Todd N. Rosenstiel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334</wicri:regionArea>
<wicri:noRegion>Colorado 80309-0334</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Alison J" sort="Fisher, Alison J" uniqKey="Fisher A" first="Alison J" last="Fisher">Alison J. Fisher</name>
</author>
<author>
<name sortKey="Fall, Ray" sort="Fall, Ray" uniqKey="Fall R" first="Ray" last="Fall">Ray Fall</name>
</author>
<author>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Butadienes (chemistry)</term>
<term>Butadienes (metabolism)</term>
<term>Chemical Fractionation (methods)</term>
<term>Chloroplasts (metabolism)</term>
<term>Circadian Rhythm (physiology)</term>
<term>Hemiterpenes (MeSH)</term>
<term>Oils, Volatile (chemistry)</term>
<term>Oils, Volatile (metabolism)</term>
<term>Organophosphorus Compounds (chemistry)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (MeSH)</term>
<term>Pentanols (chemistry)</term>
<term>Pentanols (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Salicaceae (metabolism)</term>
<term>Terpenes (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Butadiènes (composition chimique)</term>
<term>Butadiènes (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Composés organiques du phosphore (composition chimique)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Fractionnement chimique (méthodes)</term>
<term>Huile essentielle (composition chimique)</term>
<term>Huile essentielle (métabolisme)</term>
<term>Hémiterpènes (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Pentanols (composition chimique)</term>
<term>Pentanols (métabolisme)</term>
<term>Rythme circadien (physiologie)</term>
<term>Salicaceae (métabolisme)</term>
<term>Terpènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Butadienes</term>
<term>Oils, Volatile</term>
<term>Organophosphorus Compounds</term>
<term>Pentanols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Butadienes</term>
<term>Oils, Volatile</term>
<term>Organophosphorus Compounds</term>
<term>Pentanols</term>
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Butadiènes</term>
<term>Composés organiques du phosphore</term>
<term>Huile essentielle</term>
<term>Pentanols</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Plant Leaves</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chemical Fractionation</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Butadiènes</term>
<term>Chloroplastes</term>
<term>Composés organiques du phosphore</term>
<term>Feuilles de plante</term>
<term>Huile essentielle</term>
<term>Pentanols</term>
<term>Salicaceae</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Fractionnement chimique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Rythme circadien</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Circadian Rhythm</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Hemiterpenes</term>
<term>Pentanes</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biosynthesis and emission of volatile plant terpenoids, such as isoprene and methylbutenol (MBO), depend on the chloroplastic production of dimethylallyl diphosphate (DMAPP). To date, it has been difficult to study the relationship of cellular DMAPP levels to emission of these volatiles because of the lack of a sensitive assay for DMAPP in plant tissues. Using a recent DMAPP assay developed in our laboratories, we report that species with the highest potential for isoprene and MBO production also exhibit elevated light-dependent DMAPP production, ranging from 110% to 1,063%. Even species that do not produce significant amounts of volatile terpenoids, however, exhibit some potential for light-dependent production of DMAPP. We used a nonaqueous fractionation technique to determine the intracellular distribution of DMAPP in isoprene-emitting cottonwood (Populus deltoides) leaves; approximately 65% to 70% of the DMAPP recovered at midday occurred in the chloroplasts, indicating that most of the light-dependent production of DMAPP was chloroplastic in origin. The midday concentration of chloroplastic DMAPP in cottonwood leaves is estimated to be 0.13 to 3.0 mM, which is consistent with the relatively high K(m)s that have been reported for isoprene synthases (0.5-8 mM). The results provide support for the hypothesis that the light dependence of isoprene and MBO emissions is in part due to controls over DMAPP production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12114581</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>10</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>129</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.</ArticleTitle>
<Pagination>
<MedlinePgn>1276-84</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The biosynthesis and emission of volatile plant terpenoids, such as isoprene and methylbutenol (MBO), depend on the chloroplastic production of dimethylallyl diphosphate (DMAPP). To date, it has been difficult to study the relationship of cellular DMAPP levels to emission of these volatiles because of the lack of a sensitive assay for DMAPP in plant tissues. Using a recent DMAPP assay developed in our laboratories, we report that species with the highest potential for isoprene and MBO production also exhibit elevated light-dependent DMAPP production, ranging from 110% to 1,063%. Even species that do not produce significant amounts of volatile terpenoids, however, exhibit some potential for light-dependent production of DMAPP. We used a nonaqueous fractionation technique to determine the intracellular distribution of DMAPP in isoprene-emitting cottonwood (Populus deltoides) leaves; approximately 65% to 70% of the DMAPP recovered at midday occurred in the chloroplasts, indicating that most of the light-dependent production of DMAPP was chloroplastic in origin. The midday concentration of chloroplastic DMAPP in cottonwood leaves is estimated to be 0.13 to 3.0 mM, which is consistent with the relatively high K(m)s that have been reported for isoprene synthases (0.5-8 mM). The results provide support for the hypothesis that the light dependence of isoprene and MBO emissions is in part due to controls over DMAPP production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rosenstiel</LastName>
<ForeName>Todd N</ForeName>
<Initials>TN</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fisher</LastName>
<ForeName>Alison J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fall</LastName>
<ForeName>Ray</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monson</LastName>
<ForeName>Russell K</ForeName>
<Initials>RK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009822">Oils, Volatile</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000439">Pentanols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C093854">isoprene synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SH64HE46L9</RegistryNumber>
<NameOfSubstance UI="C027250">3-hydroxy-3-methylbutene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005591" MajorTopicYN="N">Chemical Fractionation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002940" MajorTopicYN="N">Circadian Rhythm</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="Y">Hemiterpenes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009822" MajorTopicYN="N">Oils, Volatile</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="Y">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000439" MajorTopicYN="N">Pentanols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12114581</ArticleId>
<ArticleId IdType="doi">10.1104/pp.002717</ArticleId>
<ArticleId IdType="pmc">PMC166521</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1999;34(2):107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jul;120(3):821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10398717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Dec;3(6):455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11074375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Nov;5(11):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11077256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Nov 1;383(1):128-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11097185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22901-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 May 15;292(2):272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11427737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jun;213(2):323-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11469599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):171-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Feb;101(2):435-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jul;75(3):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Oct;91(2):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jul;93(3):1121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Mar 1;344(6261):56-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18278026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1995 Sep;45(3):219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Feb;118(2):109-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Sep;95(3):328-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28314006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;110:130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2991702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 16;241(4872):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3420404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Dec 15;262(35):16936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3680279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Aug 5;261(22):10150-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3733706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Jan 10;249(1):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4809631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jun 2;270(22):13010-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7768893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fall, Ray" sort="Fall, Ray" uniqKey="Fall R" first="Ray" last="Fall">Ray Fall</name>
<name sortKey="Fisher, Alison J" sort="Fisher, Alison J" uniqKey="Fisher A" first="Alison J" last="Fisher">Alison J. Fisher</name>
<name sortKey="Monson, Russell K" sort="Monson, Russell K" uniqKey="Monson R" first="Russell K" last="Monson">Russell K. Monson</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Rosenstiel, Todd N" sort="Rosenstiel, Todd N" uniqKey="Rosenstiel T" first="Todd N" last="Rosenstiel">Todd N. Rosenstiel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004604 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004604 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12114581
   |texte=   Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12114581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020